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Abstract
The phase diagram and thermal properties of BeO crystal are calculated within the
quasiharmonic approximation and using density functional theory. The wurtzite, zinc blende
and rocksalt phases of BeO are considered. Phonons are calculated versus external pressure.
The pressure dependence of frequencies for the zone-center phonon modes is analyzed. The
resulting free energy provides predictions for the temperature dependence of various quantities
such as the equilibrium volume, thermal expansivity and isobaric heat capacity. The
mean-squared vibrations of BeO atoms are investigated as well. The calculated (p, T ) diagram
predicts a structural phase transition from the wurtzite to rocksalt phase solely. The zinc blende
structure is energetically not preferred in the investigated range of pressures and temperatures.
Theoretical results are compared with the available experimental data and other ab initio
calculations. Existing discrepancies between quasiharmonic theory and experiment are
discussed and some explanation is given.

1. Introduction

Insulating oxides have physical properties that make them
useful in a wide range of applications. Unique properties of
beryllium oxide, BeO, such as high thermal conductivity [1],
high electrical resistivity [2], high thermal stability (melting
temperature Tm = 2550 ◦C), high hardness [3] and radiation
resistance have made it applicable as the principal reactor-
moderating material [4] and chip carrier substrate for high-
power applications. On the other hand, BeO is an interesting
ceramic from a theoretical point of view as it is the only
alkaline-earth oxide crystallizing in the hexagonal wurtzite
structure, while other oxides in this family have the rocksalt
structure.

Beryllium oxide has been a subject of several experimental
and theoretical investigations [1–7, 9–23]. Many theoretical
studies of BeO were focused on the pressure-induced phase
transitions [15–18, 21, 22, 39]. The wurtzite structure (w-BeO)
was expected to transform either to the zinc blende (z-BeO)
or rocksalt (r-BeO) phase upon compression. A wurtzite–zinc
blende–rocksalt sequence was also reported. Moreover, it has
been found that z-BeO is a metastable phase with enthalpy
very close to that of the w-BeO phase. Depending on the

approximation used in first-principles calculations a significant
discrepancy exists in prediction of the transition pressure.
The w-BeO phase was expected to undergo transition to the
r-BeO phase at 22 or 40 GPa [6, 15]. The intermediate
z-BeO phase was reported to be stable above 74, 63–76 or
91 GPa before transforming to the r-BeO phase at 137, 95 or
147 GPa [17–19]. On the other hand, more recent calculations
performed by Cai et al [21] do not predict the wurtzite–zinc
blende–rocksalt phase transition sequence below 200 GPa.
They suggest that around 105 GPa the w-BeO structure can
transform directly to the r-BeO structure. A similar value
of the wurtzite-to-rocksalt transition pressure (107 GPa) was
obtained from the full-potential linearized-augmented plane-
wave method [22]. These calculations predict also for the
r-BeO phase to transform into the z-BeO phase above 110 GPa.
Only a few experiments have been performed to look at the
phase transitions in BeO [6, 12]. The static x-ray diffraction
experiments [12] show no phase transition up to 126 GPa but
they point out a new phase which appears around 137 GPa.

Most of the theoretical studies devoted to the phase sta-
bility of BeO upon pressure was limited to zero temperature
and the role of the lattice vibrations in stabilizing one phase
over the other at the given temperature and pressure was ne-
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glected. In nonmetals such as BeO, phonons are the primary
excitations that can influence its thermodynamical and trans-
port properties. Behavior of the lattice vibrations under pres-
sure can provide additional information about the structural
stability and phase transformation [24–26]. Vibrational prop-
erties of BeO have been studied experimentally by infrared [4]
and Raman spectroscopy [4, 6, 27–30] as well as by inelas-
tic neutron [31, 32] and x-ray scattering [33]. For the w-BeO
structure some preliminary calculations of the phonon disper-
sion relations have been done using phenomenological mod-
els [32, 34] and recently within the ab initio approach [33, 35].
In the latter case, phonons were obtained only for the ground
state.

The main aim of the present work is to extend the
description of BeO properties to finite temperatures using the
approach of the quasiharmonic approximation. Phonons are
calculated as a function of external pressure for wurtzite, zinc
blende and rocksalt phases. Some selected thermal properties
of this compound, e.g. Gibbs free energy, volume thermal
expansion, and heat capacities at constant volume and pressure,
are investigated and compared to the available experimental
data. Relying on the calculated quasiharmonic Gibbs free
energies the (p, T ) phase diagram is constructed and the
structural stability of BeO is analyzed.

2. Methodology

Ab initio calculations of wurtzite, zinc blende and rocksalt
phases of BeO were performed within density functional
theory, using the pseudopotential method with the generalized
gradient approximation (GGA) implemented in the VASP
code [36, 37]. Vanderbilt-type ultrasoft pseudopotentials
provided by VASP were used for beryllium and oxygen atoms.
These pseudopotentials represent (s2p0) and (s2p4) electron
configurations of Be and O atoms, respectively. A plane-
wave expansion up to 515 eV was used. All calculations were
done with 2 × 2 × 2 supercells containing 48, 64 and 64
atoms for w-BeO, z-BeO and r-BeO phases, respectively. The
Brillouin zone was sampled using the 2 × 2 × 2 k-point mesh
generated by the Monkhorst–Pack scheme. A combination of
conjugate gradient energy minimization and a quasi-Newton
force minimization was used to optimize geometry and the
atomic positions of the supercells. The atomic positions were
relaxed until the forces were smaller than 10−6 eV Å

−1
. The

total energy was converged down to 10−7 eV. External pressure
was varied from −30 to 130 GPa.

Dynamical properties of the BeO phases were calculated
using the direct method [38, 39] based on the forces
calculated via the Hellmann–Feynman theorem. The non-
vanishing Hellmann–Feynman (HF) forces acting on the
atoms in the given supercell are generated when a single
atom is displaced from its equilibrium position. For each
phase of BeO, the HF forces were created by displacing
crystallographically nonequivalent Be and O atoms from their
equilibrium positions. The displacement amplitude of 0.03 Å
was used. To minimize systematic error, both positive and
negative displacements were applied. Therefore, 12, 4 and 4

displacements were calculated for w-BeO, z-BeO and r-BeO
structures, respectively.

In the BeO crystal, the macroscopic electric field splits
the infrared-active optical modes into transverse (TO) and
longitudinal (LO) components. Frequencies of TO modes
are calculated in a straightforward manner within the direct
method but the LO modes can only be obtained via the
introduction of the non-analytical term [40] into the dynamical
matrix. In general, this term depends on the Born effective
charge tensor Z∗ and the electronic part of the dielectric
function ε∞ (high-frequency dielectric constant). For cubic
phases of BeO (z-BeO and r-BeO) the symmetry reduces the
tensor Z∗ to a diagonal tensor with a single element Z∗

Be =
−Z∗

O. In hexagonal symmetry such as in the w-BeO phase
the tensor is diagonal and reduces to two components, i.e.
parallel (Z∗

‖) and perpendicular (Z∗
⊥) to the c axis. Hence,

the following relations apply: Z∗
‖ ≡ Z∗

zz(Be) = −Z∗
zz(O)

and Z∗
⊥ ≡ Z∗

xx(Be) = Z∗
yy(Be) = −Z∗

xx (O) = −Z∗
yy(O).

Effective charges were calculated for each phase at zero
pressure using the Berry phase method. For w-BeO Z∗

⊥ = 1.85
and Z∗

‖ = 1.97 were obtained. They are comparable to those
determined by Bosak et al [33] (Z∗

⊥ = 1.79, Z∗
‖ = 1.85) and

stay in agreement with other ab initio calculations [35, 41–43].
The Born effective charges of 1.98 and 2.0 were obtained for
z-BeO and r-BeO, respectively. The averaged value of the
high-frequency dielectric constant of ε∞ = 2.96 has been
taken from experiments performed by Loh [4]. In the present
work, the Born effective charges and ε∞ are assumed not
to vary with the applied pressure. Such an approximation
is supported by experiments and calculations carried out for
AlN, GaN and ZnO compounds which predict for these
materials a weak pressure dependence of Z∗ and ε∞ [44–46].
Therefore, the calculated LO–TO splitting is expected to show
only a slight variation upon crystal compression. Moreover,
the LO–TO splitting has negligible influence on the thermal
properties of the material as the thermodynamical functions
being derived from the phonon density of states are practically
insensitive to the decrease or increase in the mode splitting
with pressure [25, 47]. This is due to the fact that LO modes
contribute very little to the phonon density of states as they
differ from TO modes only in a small volume of the reciprocal
lattice in the vicinity of the �-point.

To study the phase stability of the crystal and to construct
the (p, T ) diagram the quasiharmonic approximation was
applied. In this approach a change of the crystal volume due
to finite temperature is mapped to the change of the crystal
volume at T = 0 K (typically as a function of pressure).
Thermodynamical functions are calculated using standard
formulae for harmonic crystals. Anharmonic effects are, to
some extent, taken into account by the volume (pressure)
dependence of the phonon frequencies. Phonon frequencies at
constant volume are assumed to be independent of temperature.
The relative change of the (k, j) mode frequency ω(k, j) with
volume V is usually described by the mode-specific Grüneisen
parameter which is a dimensionless quantity defined as

γ (k, j) = −∂(ln ω(k, j))

∂ ln V
= − V

ω(k, j)

∂ω(k, j)

∂V
. (1)
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The thermal Grüneisen parameter γ (T ) can be obtained as the
following average:

γ (T ) =
∑

k, j γ (k, j)CV (k, j)
∑

k, j CV (k, j)
, (2)

where the contribution from each mode (k, j) is weighted by
its contribution to the specific heat CV (k, j). The denominator
of the above equation equals the lattice contribution to the heat
capacity at constant volume and it takes on the following form:

CV = kB

∑

k, j

(
h̄ω(k, j)

2kBT

)2 1

sinh2(h̄ω(k, j)/2kBT )
, (3)

where T is the temperature, and kB and h̄ denote the Boltzmann
and Planck constants, respectively. One can also express CV

via the calculated phonon density of states g(ω). Hence, the
equivalent form of equation (3) is given by

CV = NrkB

∫ ∞

0
dω g(ω)(h̄/kBT )

exp(h̄ω/kBT )

[exp(h̄ω/kBT ) − 1]2
,

(4)
where N is the number of primitive unit cells and r stands
for the number of degrees of freedom in the unit cell. In the
(quasi)harmonic approximation the phonon density of states
(implicitly depending on V ) can be used to evaluate phonon-
dependent thermodynamic quantities as a function of volume
and temperature. In particular, the Helmholtz free energy of
the material can be expressed in the following way:

F(V , T ) = E(V ) + Fph(V , T ) = E(V ) + kBT

×
∫ ∞

0
g(ω) ln

[

2 sinh

(
h̄ω

2kBT

)]

, (5)

where E(V ) is the energy of the motionless lattice obtained
directly from ab initio calculations, while Fph(V , T ) denotes
the vibrational free energy of a harmonic system. The term
Fph(V , T ) includes the vibrational zero-point energy which
remains finite for T → 0. Any purely electronic contribution
is neglected. One has to note that only Fph(V , T ) depends
explicitly on temperature. At the given temperature T , the
equilibrium volume follows from a minimization of F(V , T )

with respect to V .
The crystal equation of state can be obtained from the

following expression:

p(V , T ) = −
[
∂ F(V , T )

∂V

]

T

, (6)

with p denoting pressure. Under conditions of constant T and
p, the thermodynamically stable phase is that with the lowest
Gibbs free energy, defined as

G(T, p) = F(V , T ) + pV . (7)

Calculations of G(T, p) have to be carried out for all phases
under consideration. A coexistence of phases is indicated by
the points on the (p, T ) plane for which the difference between
Gibbs free energies is equal to zero.

The calculated F(V , T ) can be used to study thermal
properties and thermodynamic parameters of the crystal. The

equation of state, given by relation (6), enables calculations
of the thermal expansivity. The volume thermal expansion
coefficient is defined as

αV (T ) = 1

V

(
∂V

∂T

)

p

. (8)

In the quasiharmonic approximation the quantities αV , CV , γ

and the isothermal bulk modulus BT = V (∂2 F(V , T )/∂2V )T

are connected by the Grüneisen relation:

γ (T ) = V αV BT

CV
. (9)

Thermal expansivity of a crystal leads to the difference
between the heat capacity at constant pressure Cp and the
heat capacity at constant volume CV , which is given in the
quasiharmonic approach by the following relationship:

Cp − CV = α2
V (T )BV T . (10)

The heat capacity CV follows the Debye model and approaches
the Dulong–Petit limit at high temperatures, while Cp

increases linearly with T at high temperatures.
Technical details concerning the construction of the phase

diagram using the quasiharmonic approximation can be found
in [26].

3. Results and discussion

3.1. Structural properties of BeO phases and phase stability at
T = 0 K

The calculated structural parameters of the w-BeO, z-BeO
and r-BeO phases are listed in table 1. They result from
the minimization of the supercell ground-state energies with
respect to the electronic states and ionic configurations.
The bulk modulus is derived from the least-squares fit of
the E(V ) curve. It is assumed that the calculated data
follow the Murnaghan equation of state. Table 1 also
compares the calculated structural properties of BeO phases
with the experimental data [3] and other first-principles
calculations [19, 23]. One has to note that neither for z-BeO
nor r-BeO do the experimental data exist. A comparison with
other theoretical results is made only to the DFT calculations
performed with the GGA approximation. Both theoretical
results are very close to each other and they remain in
good agreement with experiments. One observes a slight
underestimation of the w-BeO bulk modulus as compared to
the experimental data. The lattice constants of the w-BeO
structure decrease monotonically with increasing pressure. For
the w-BeO phase, the a axis is more compressible than the c
axis, while the ratio c/a and the oxygen parameter do not vary
with pressure. Results of the present calculations are very close
to the experimental data reported by Hazen et al [3], which
show practically isotropic compression of the w-BeO structure
and the lack of pressure dependence of the oxygen parameter.

It is found that the w-BeO phase is lower in energy
than the remaining phases. The difference between the
ground-state energies of w-BeO and z-BeO is as small as

3
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Table 1. Calculated and measured structural parameters, bulk moduli and axial compressibilities for wurtzite, zinc blende and rocksalt phases
of BeO. Lattice constants, bulk modulus (B) and compressibilities (κa, κc) are given in (Å), (GPa) and (GPa−1), respectively. Symbol x
denotes the oxygen position in the w-BeO structure.

Theory Experiment (298 K)

Present Reference [19] Reference [23] Reference [3]

w-BeO structure

a (Å) 2.706 2.703 2.712 2.696
c/a 1.624 1.620 1.624 1.624
x 0.378 0.377 0.378 0.378
B 204 203 209 210
κa 1.51 × 10−3 — 1.61 × 10−3 1.50 × 10−3

κc 1.45 × 10−3 — 1.58 × 10−3 1.46 × 10−3

z-BeO structure

a 3.818 3.810 — —
B 198 201 — —
κa 1.49 × 10−3

r-BeO structure

a 3.647 3.648 — —
B 229 231 — —
κa 1.31 × 10−3

−13 meV/f.u., while the energy difference between w-BeO
and r-BeO amounts to −1 eV/f.u.. The w-BeO and z-BeO
structures are similar to each other as far as the second-nearest
neighbors are concerned and hence such a small difference
in their energies can be expected. Results of the present
calculations are consistent with predictions of other ab initio
results as well as experimental observations which indicate
the wurtzite structure to be the most stable phase of the BeO
crystal.

The phase transition pressure pt is determined from the
comparison of the Gibbs free energies of particular BeO
phases. For the zero-temperature limit, the Gibbs free energy
is simply the enthalpy of the system, i.e. G(T = 0, p) =
H (p) = E(V ) + pV . The enthalpies of the w-BeO, z-BeO
and r-BeO phases increase gradually with increasing pressure.
The enthalpy of w-BeO becomes equal to the enthalpy of z-
BeO at 101 GPa. Above this pressure, the z-BeO structure is
more stable than the w-BeO structure. Subsequently, the z-
BeO phase transforms to the r-BeO phase at 120 GPa. The
calculated transition pressures from w-BeO to z-BeO and from
z-BeO to r-BeO are respectively higher and lower than those
reported by Park et al [19]. The latter calculations predict the
first transformation at 91 GPa and the second at 147 GPa.

3.2. Phonons in the w-BeO phase

The primitive cell of the w-BeO structure contains four atoms
(2 f.u.) which give rise to 12 phonon branches. The phonon
dispersion curves along high-symmetry points calculated at
zero pressure are shown in figure 1. They are compared to the
experimental data measured at room temperature by inelastic
x-ray scattering [33]. The calculated acoustic branches remain
very close to the experimental data. Discrepancies between
experimental and theoretical phonons are observed mostly for
high-frequency optic modes in the �-X and �-A directions.

Figure 1. (a) Calculated phonon dispersion relations of the w-BeO
phase. Experimental data from inelastic x-ray scattering [33]
measured at room temperature are shown as open symbols. (b) Total
and partial phonon densities of states (DOS). Contributions to total
DOS (shaded area) from Be and O atoms are denoted by solid and
dotted lines, respectively.

Figure 1(b) shows the total and partial phonon densities of
states (DOS). The partial DOS describes the contribution to
the density of states for the selected atom. The high-frequency
optical phonons are dominated by the dynamics of light Be
atoms and this part of the vibration is separated from the lower
lying mixed Be and O vibrations by a small gap. Such a gap,
which for the w-BeO crystal amounts to about 1 THz, is typical
for crystals having the wurtzite-type structure, e.g. AlN [26].

At the �-point of the Brillouin zone the phonon modes in
the w-BeO structure decompose according to the irreducible
representations characteristic for the C4

6v space group:

�opt = A1 + 2B1 + E1 + 2E2 and �ac = A1 + E1

for the optical and acoustic modes, respectively. The

4
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Figure 2. Pressure dependence of the �-point optical frequencies in
w-BeO crystal. Solid, dashed and dotted curves represent A1, E1 and
E(2)

2 modes, respectively. Experimental data [6] are denoted by open
symbols. Squares, down-triangles, up-triangles and circles are
assigned to A1 (TO), A1 (LO), E1 (TO) and E(2)

2 modes, respectively.

Table 2. Comparison of the optical modes frequencies (in THz) at
the Brillouin zone center of w-BeO crystal.

Mode This work Exp. [4] Exp. [27] Exp. [6] Exp. [33]

E(1)

2 10.01 10.20 10.14 10.14 10.12
A1 (TO) 19.50 20.52 20.34 20.46 20.34
E(2)

2 19.68 20.52 20.52 20.46 20.49
E1 (TO) 20.91 21.75 21.66 21.69 21.68
A1 (LO) 33.79 32.55 32.43 32.85 32.42
E1 (LO) 34.55 32.85 32.91 — 32.87

optical phonons A1 and E1 are Raman- and infrared-active,
while the E2 mode is only Raman-active. Modes B1 are
silent. Since BeO has a mixed ionic–covalent bonding, the
macroscopic electric field splits the infrared-active modes A1

and E1 to transverse A1 (TO), E1 (TO) and longitudinal
A1 (LO), E1 (LO) components. The E1 mode is due
to an opposite motion of cationic and anionic sublattices,
with vibrations perpendicular to the c axis. The A1 mode
involves correlated movement of BeO bonds along the c axis,
with atoms in a given sublattice vibrating opposite to each
other. The calculated frequencies of the above modes at zero
pressure are listed in table 2 and compared with experiments.
Theoretical TO frequencies are close to those measured by
Raman spectroscopy [4, 6, 27, 29, 30] and inelastic x-ray
scattering [33] and only a small underestimation of about 0.8–
1 THz can be observed. Frequencies of LO modes are higher
than the respective experimental values by about 0.9–1.7 THz.
This overestimation is mainly due to the approximated value
of ε∞ and the values of the effective charges which have been
applied to produce the LO modes.

The influence of external pressure on the optical
frequencies in the w-BeO crystal is shown in figure 2. A
comparison with the experimental data measured by Raman
spectroscopy [6] is made. These experiments were performed
up to 41.5–55 GPa. The pressure dependence of the E(1)

2
mode is not shown as the frequency of this mode (10.01 THz)
remains constant upon compression. Such behavior of the E(1)

2

Figure 3. Mode Grüneisen parameters of w-BeO structure calculated
according to equation (1).

Table 3. Calculated and experimental mode Grüneisen parameters
for the �-point optical modes in the w-BeO phase.

Mode This work Exp. [6]

E(1)

2 0.15 0.04
A1 (TO) 1.70 1.69
E(2)

2 1.79 1.63
E1 (TO) 1.54 1.88
A1 (LO) 0.91 0.98
E1 (LO) 0.90 —

mode frequency versus pressure was observed experimentally
as well. The remaining mode frequencies increase gradually
with compression. When the pressure is increased up
to 40 GPa, the experimental LO–TO splitting of the A1

mode decreases by about 1.4 THz, while the calculated
decrease in the splitting is nearly three times smaller. The
calculated splitting of the E1 mode shows similar behavior
upon pressure. Present calculations are expected to produce
a weak or practically constant dependence of the mode
splitting versus pressure due to the approximations applied.
Therefore, the calculated LO–TO splitting is governed mainly
by changes of the crystal volume with compression which
affect predominantly the TO modes.

The volume dependence of the phonon frequencies,
described by the mode Grüneisen parameter, exhibits a quite
complex nature which is shown in figure 3. Theoretical
γ (k, j) of the optical modes at the Brillouin zone center are
compared with the available experimental data [6] in table 3.
The calculated values agree well with those measured by high-
pressure Raman spectroscopy, except the E(1)

2 mode for which
a significantly higher value is predicted by theory. Parameters
γ (k, j) are positive for all phonon branches, indicating that
the wurtzite structure of BeO should exhibit a normal thermal
expansion. A Brillouin zone integration of the mode Grüneisen
parameters yields an average value of γ = 1.04.

5
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Figure 4. Volume thermal expansion of w-BeO crystal. Solid and
open symbols indicate experimental data taken from [3] and [5],
respectively. The inset shows the calculated volume thermal
expansion coefficient using equation (9).

3.3. Thermal properties of the w-BeO phase

The thermal expansion of the w-BeO crystal can be directly
determined from the free energy given by equation (5). The
minimum of the F(V , T ) curve corresponding to equilibrium
volume at a given T shifts to larger values with increasing
temperature. The volume thermal expansion expressed in the
following form:

β = 
V

V298
= V (T ) − V298

V298
(11)

is plotted in figure 4. The symbol V298 denotes the
crystal volume at 298 K. Good agreement between theoretical
expansion and that obtained in experiments [3, 5] is achieved
at temperatures not exceeding 700 K. At higher temperatures,
the difference between theoretical and experimental β reaches
0.6%. The inset in figure 4 shows the temperature dependence
of the volume thermal expansion coefficient calculated
according to the Grüneisen relationship (9). One has to note
that the expansivity exhibits the same temperature behavior as
the heat capacity CV . Between room temperature and 1200 K,
the average value of αV equals 2.78×10−5 K−1 as compared to
2.66×10−5 K−1 and 2.77×10−5 K−1 given by experiment [3]
and other theoretical calculations [23], respectively. It should
be noted that, for crystals with a noncubic symmetry, one
can expect anisotropic thermal expansion. Measurements
performed by Iwanaga et al [5] indicate rather small anisotropy
in the thermal expansivity of the w-BeO structure (α⊥/α‖ =
1.11) as compared to other wurtzite-type crystals (CdSe, CdS,
ZnO).

The thermal expansivity results in the difference between
CV and Cp, the latter usually measured in experiments. The
term α2

V BV T accounts for the lattice anharmonicity. It is
relevant at higher temperatures where the difference between
CV and Cp can be significant. In many materials the standard
Grüneisen formalism, in which phonon frequencies depend
explicitly only on volume and not on temperature, may
be insufficient to explain the behavior of Cp at very high

Figure 5. Theoretical and experimental heat capacities of BeO.
Experimental data (open symbols) are taken from [7] and [8].
Dashed curve represents calculated CV according to the harmonic
approximation. Solid and dotted curves denote C p obtained within
and beyond the quasiharmonic approximation, respectively.

temperatures. It occurs that for the BeO crystal one has to
go beyond the Grüneisen approximation to fit the experimental
Cp [7, 8] at elevated temperatures. This indicates that the
BeO lattice anharmonicity can also be due to temperature
dependence of the phonon frequencies. This effect cannot be
treated theoretically within the present approach and therefore
one has to include phenomenological corrections. The
difference between measured and theoretical heat capacities at
constant pressure (
Cp) could be reasonably approximated for
temperatures T � T0 by the following function:


Cp = A0 + A1(T − T0) + A2(T − T0)
2, (12)

with A0 = −0.016 J (mol K)−1, A1 = 2.81 ×
10−3 J (mol K2)−1, A2 = −2.23 × 10−7 J (mol K3)−1 and
T0 = 500 K. These corrections are insignificant below T0

and the experimental data are also well reproduced by CV ,
which can be seen in figure 5. The applied correction becomes
meaningful above 1000 K, when substantial difference
between experiment and quasiharmonic theory is found.

Figure 6(a) shows the mean-squared amplitude of atomic
vibrations calculated versus temperature and at ambient
pressure for Be and O atoms. The mean-squared displacements
of a given atom constitute a second-rank symmetric tensor
and they can be expressed by the diagonal and off-diagonal
partial phonon density of states [38]. Due to the hexagonal
symmetry of the w-BeO crystal the tensor of thermal motions
has two independent components, i.e. U11 = U22 =
2U21 and U33. Experimental Ui j from [3] are shown
for comparison as well. It is obvious that oxygen atoms
exhibit smaller mean-squared displacements than beryllium
atoms since the oxygen mass is nearly twice the mass of
beryllium. Theoretical U11 and U33 of both Be and O
atoms are underestimated as compared to the respective
experimental values. A discrepancy between experiment and
theory is larger at room temperature and it becomes smaller at
elevated temperatures. Moreover, at higher temperatures the
component U33(Be) falls in the range predicted by theory for

6



J. Phys.: Condens. Matter 22 (2010) 045404 U D Wdowik

Figure 6. Mean-squared displacements versus temperature for
cations and anions in BeO crystal. Calculated U11 and U33

components are shown as solid and dashed curves, respectively.
(b) Isotropic temperature factors for Be (solid curve) and O (dashed
curve) versus external pressure. Experimental data for Be (solid
symbols) and O (open symbols) are taken from [3].

Table 4. Calculated and experimental [3] anisotropy in thermal
motion of BeO atoms. Anisotropy is denoted as η = U11/U33.

η (Be) η (O)

T (K) Theory (%) Exp. (%) Theory (%) Exp. (%)

300 5 31 1 9
1183 5 22 1 33

U11(Be). Much smaller deviations between the calculated and
measured mean-squared displacements are found for oxygen
atoms. The component U11 is greater than U33, resulting
in the anisotropy of the thermal motion. Although the
anisotropy observed in experiment is confirmed by the present
calculations, the magnitude of the anisotropy given by theory is
significantly smaller than that determined experimentally. The
measurements give a pronounced difference between U11(Be)
and U33(Be) even at room temperature, while the calculations
result in a rather small anisotropy (see table 4 for details).
Contrary to experiment, the thermal motion of oxygen atoms
is predicted to be practically isotropic. One has to note
that the calculated anisotropy of both Be and O atoms is
constant versus temperature. This is due to the harmonic
approximation which was applied to obtain the mean-squared
amplitude of atomic vibrations. From the experimental point
of view, the anisotropy of oxygen vibrations increases with
increasing temperature, while the thermal motion of Be atoms
tends to be more isotropic at high temperatures. The anisotropy
in thermal motions can account for the anisotropy of the
thermal expansivity and for a decrease of the c/a ratio with
increasing temperature, which were observed experimentally
in the wurtzite structure of BeO by Iwanaga et al [5]. The
slope of theoretical mean-squared displacements could be used
to estimate the Debye temperature (�D) of the BeO crystal.
The calculated �D amounts to 1100 K as compared to 1280 K,
the latter reported by Cline et al [10].

Figure 7. Calculated ( p, T ) phase diagram of BeO. Inset: difference
in the Gibbs free energies between w-BeO and z-BeO phases versus
temperature at ambient pressure (solid line) and 130 GPa (dashed
line).

Experimental data of Hazen et al [3] indicate that
the vibrational amplitudes can be pressure-dependent. The
measurements were carried out up to 5 GPa at room
temperature and the isotropic temperature factors 〈B〉 of both
Be and O atoms have been given. To compare the present
calculations with the reported data, the temperature factors
were evaluated according to the following relation:

〈B〉 = 8π2〈U〉, (13)

with 〈U〉 denoting the trace of the tensor Ui j . The pressure
dependence of 〈B〉 is shown in figure 6(b). Again, a
discrepancy between theory and experiment is encountered
for Be atoms. At room temperature, calculations predict a
very small decrease of 〈B〉(Be) with compression, while the
experimental data show the opposite behavior. Calculations
meet the experiment only at ambient pressure, where the
theoretical temperature factors either for Be or O atoms
are similar to those found in experiment. A decrease of
〈B〉 with increasing pressure is more pronounced at elevated
temperatures. On the other hand, the higher the pressure the
smaller the change in 〈B〉 is observed.

4. Phase diagram of BeO

In the framework of the quasiharmonic approximation one is
able to construct the complete phase transition diagram from
the sets of the Gibbs free energy plots. The phase transition
diagram is shown in figure 7. This diagram shows the regions
of the most stable structures of the BeO crystal. At low
pressures and for temperatures below 2500 K the wurtzite
structure of BeO is the most stable one. At higher pressures
and temperatures the rocksalt phase of BeO becomes stable.
Figure 8 shows the behavior of the Gibbs free energies versus
increasing temperature and pressure for wurtzite and rocksalt
phases. At the given temperature and pressure, the curve
crossing indicates the coexistence of w-BeO and r-BeO phases.
For example, at zero temperature the transition pressure equals
113 GPa, while at 2500 K it decreases to 76 GPa. It should be
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Figure 8. Variation of the Gibbs free energies with temperature at
100 GPa for w-BeO and r-BeO phases. Inset: Gibbs free energies of
w-BeO and r-BeO phases versus pressure at 1000 K. Solid and
dashed curves are assigned to w-BeO and r-BeO structures,
respectively.

noted that no zinc blende structure appears in the calculated
(p, T ) diagram. Hence, no phase transition either from w-
BeO to z-BeO or from z-BeO to r-BeO takes place. The
wurtzite phase transforms directly into the rocksalt phase and
the higher the temperature the lower the transition pressure.
The zinc blende phase of BeO is only slightly higher in
energy than the wurtzite phase, as can be seen in the inset
of figure 7. The difference between the Gibbs free energies
of w-BeO and z-BeO increases with increasing temperature
and decreases with increasing pressure, i.e. the temperature
stabilizes the wurtzite phase over the zinc blende phase. The
role of pressure is opposite, which is also known from many
calculations performed with a neglected temperature effect.
The quasiharmonic calculations support theoretical predictions
of Cai et al [21], which also suggest the instability of the z-BeO
phase as far as the energetic stability is concerned. Thus, the
intermediate phase having the zinc blende structure has to be
excluded from the transition sequence proposed previously for
the BeO crystal by some first-principles calculations.

5. Summary and conclusions

The structural, vibrational and thermodynamic properties
of BeO crystals have been studied by the quasiharmonic
approximation with density functional theory. The quantities
calculated at the zero-temperature limit remain in the range
determined by earlier theoretical studies. Dispersion relations
of phonons at ambient pressure show good agreement with
recent x-ray scattering experiments. An increase in phonon
frequencies with increasing pressure is observed. This effect
is mainly due to a decrease of the crystal volume with
compression, which involves a diminishing of the interatomic
distances and an increase of the force constants. Therefore,
the zone-center optical phonon mode frequencies shift upward
with increasing pressure, which is also seen experimentally by
Raman and infrared spectroscopes.

Most of the calculated thermodynamic properties of the w-
BeO structure stay in acceptable agreement with the available

experimental data. Despite some inconsistency between theory
and experiment which was found for amplitudes of thermal
vibrations, the results of present calculations can give some
insight into the anisotropy in the thermal expansivity of the w-
BeO crystal. This anisotropy is likely to be partly driven by the
anisotropy of the thermal motion of atoms.

The phonon frequencies are expected to be not only
volume-but also temperature-dependent since the isobaric heat
capacity obtained within the quasiharmonic approximation
is unable to account for the experimental data at very
high temperatures. Hence, the anharmonicity in the lattice
vibrations of BeO can be only partly explained within
quasiharmonic theory.

The calculated (p, T ) diagram predicts the pressure-
driven phase transition from wurtzite to rocksalt structure.
The increasing temperature lowers the value of the transition
pressure. Results given by the quasiharmonic approximation
supply previous theoretical studies aimed at structural stability
of BeO crystal. However, they exclude the intermediate
zinc blende structure from the phase diagram, at least
in the theoretically investigated range of temperatures and
pressures. It should be mentioned that the wurtzite–zinc
blende–rocksalt transition sequence was also not confirmed by
the approach of quasiharmonic theory applied for wurtzite-type
AlN compound [26].
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